
Using Markov Chains to Filter Machine-morphed
Variants of Malicious Programs

Mohamed R. Chouchane, Andrew Walenstein, and Arun Lakhotia
Center for Advanced Computer Studies

University of Louisiana at Lafayette
mrc@ieee.org, walenste@ieee.org, arun@louisiana.edu

Abstract

Of the enormous quantity of malicious programs seen
in the wild, most are variations of previously seen pro-
grams. Automated program transformation tools—i.e.,
code morphers—are one of the ways of making such
variants in volume. This paper proposes a Markov
chain-based framework for fast, approximate detection
of variants of known morphers wherein every morphing
operation independently and predictably alters quickly-
checked global program properties. Specifically, iden-
tities from Markov chain theory are applied to approx-
imately determine whether a given program may be a
variant created from some given previous program, or
whether it definitely is not. The framework is used
to define a method for finding telltale signs of the use
of closed-world, instruction-substituting transformers
within the frequencies of instruction forms found in a
program. This decision method may yield a fast tech-
nique to aid malware detection.

1. Introduction

The number of malicious programs found in circula-
tion has been growing at a tremendous rate [21]. This
growth is causing many troubles, not only because of
sheer volume [23], but because it is difficult to produce
a defensive response that is both rapid enough and com-
prehensive enough to catch all the new threats.

The fact is, though, that the vast majority of the new
malicious programs are not wholly novel programs: they
are variants of previously seen programs. The vari-
ants can be created via a number of methods, includ-
ing: hand modification, using kits or frameworks, us-
ing packers or encryptors, or using automated program
transformers, i.e., using morphers. These morphers can
be utilized on the malware writer’s desktop, on distribu-
tion servers implementing so-called “server-side poly-

morphism” [20], and within self-replicating malware it-
self, which are commonly called “metamorphic” mal-
ware [22]. Considering the problems that variants can
cause, the use of automated morphing is likely to remain
desirable on the part of malware authors [19].

Both dynamic and static methods have been pro-
posed for aiding detection of morphed variants of exist-
ing programs. For example, normalizationhas been pro-
posed to remove obfuscating program variations [7, 16],
and for “reversing” the effects of known morphers [25].
Even if these are effective, it can be expensive to ap-
ply powerful variation-detection methods, particularly
on suspect programs for which they are not necessary. It
would be beneficial to have a fast filter that can quickly
determine whether a given input program need not be
considered for more involved processing [4].

One idea for building such fast filters is to consider
the morphers as “authors” and recognize their author-
ship [3]. This idea is to take advantage of cases where
the morphing engines have idiosyncraticoutput due to
their recognizable repertoire of morphing techniques.
However even if the morphing engine is not particularly
idiosyncratic, it may still be predictable. An interesting
question, then, is if the predictability of a given morpher
can be used to generate a fast filter that can quickly dis-
card programs that are definitely not a variant produced
by it. It has been suggested that Markov chain theory,
for example, might be used to define a framework for
doing such detections [5].

This paper shows for certain classes of program mor-
phers, Markov chain theory can be used to formalize
an approach for recognizing whether a given program
may be a morphed variant, or is not. In particular, the
approach applies to morphers that satisfy specific prop-
erties including: independence of morphing operations,
and the predictable alteration of a rapidly-checkable pro-
gram property that drives further morphing. A key to
the framework is that the program property must make
it possible to predict the effects of morphing actions on

that property. Filtering is done by encoding the property
changes as a transition matrix and then using Markov
identities to test, to some fixed generation, whether or
not a given program is a descendant of some known an-
cestor. Because of the Markov properties, the approach
produces no false negatives. However, in some cases an
exact solution is expected to be too expensive to com-
pute exactly, and well-known approximation algorithms
can be used instead. We introduce the framework us-
ing a particular example of its definition for detecting
signs of closed-world, instruction-substituting morphers
within the frequencies of instructions within programs.

Section 2 motivates the solution and reviews pre-
vious attempts to use global properties of instruction
frequencies for fast filtering. Section 3 introduces the
Markov-based decision framework; it is elaborated in
Section 3.2 it by way of the specific example of an in-
struction frequency-based filtering approach. Section 4
introduces generalizations of the framework and dis-
cusses methods for reducing the space needed for the
transition tables.

2. Fast filtering of morphed variants

It is known that the problem of recognizing families
of related programs created by a grammar-based gen-
erator can be modeled formally as a language recogni-
tion problem [10, 12]. A morpher, upon input of a spe-
cific ancestor program, generates a languageor “viral
set” [8] consisting of all the different variants it can pro-
duce. Depending upon the morpher’s qualities, as Filiol
showed [10], the recognition problem can be classified
into one of several categories based on Chomsky’s lan-
guage hierarchy. Even if the morpher is relatively simple
linguistically, however, it is an important practical prob-
lem of knowing how to create an efficient recognizer.

One approach for recognizing the viral set is to recog-
nize commonalitiesin either form, behaviour, or seman-
tics. This approach relies upon the morpher not mod-
ifying the commonalities being sought. For example,
one might look for common patterns of byte or opera-
tion sequences (e.g., Karim et. al [13]), or of calls or
control flow (e.g., Zhang et. al [26]), or of semantic pat-
terns (e.g., Christodorescu et. al [6]). A limitation of
all such approaches is that the morpher may serve to re-
move those commonalities that are being sought, a goal
known to morpher authors [9]. Another way of saying
this is that the viral set may not uniformly contain a pat-
tern of commonality of the type being considered.

A second general approach to such recognition is to
normalizethe input programs with the aim of making
the modifications introduced by the morpher transpar-
ent and moot. If the specific morphing engine is known,
then precise normalization engine may be possible—it

may even be possible to generate the normalizers au-
tomatically from a model of the morpher [25]. If the
morpher is not known, it may be possible to use general
transformations that try to remove added variations [7]
and impose order on unconstrained variations [16].

A third approach is to recognize the output of the
morpher by its properties [3]. This is akin to author-
ship analysis for text [14] or programs [15], only instead
of a human author one is considering that the morpher
is a type of author modifying an original text. The cen-
tral idea for authorship recognition is the detection of
the idiosyncrasies of the author; in morphing terms, this
amounts to searching for unique or limited repertoire of
the morpher [4].

As pointed out by Chouchane et. al [4], no matter
the efficacy of the detector for morphed variants, it may
be too computationally inefficient to use on every sus-
pect program. For example, a semantics-based approach
such as that of Christodorescu et. al [6] involves heavy-
weight program analysis. But in many cases such deep
analysis is unnecessary, as many of the samples under
consideration (in a system scan or within network traf-
fic) are not, in fact, going to be malicious morphed vari-
ants that require the heavyweight detection. An approx-
imate but fast filter may therefore be extremely useful so
that the more resource-hungry approaches are used only
infrequently—ideally, only when needed.

Chouchane et. al [4] proposed a heuristic method for
such a filter for metamorphic programs. It is based on
measuring statistical properties of the instruction forms
of the program. Specifically, the filtering was based on
the instruction form frequencies. The different genera-
tions of a metamorphic program were characterized (ap-
proximately) by averaging the frequencies of their in-
struction forms. A suspect program is then heuristi-
cally filtered if the difference between its instruction fre-
quency vector (IFV) and all averaged vectors is higher
than some threshold.

A problem with such past approaches is that, even
if they are fast, they are heuristic in the sense that they
could guarantee neither false positive nor false negative
rates. A key reason is the heuristic nature of the test.
But a secondary reason is that it relies on finding the
idiosyncrasies of the morphing engine. While the data
from Chouchane et. al [4] suggests that instruction form
frequencies may indeed be more indicative of the mor-
pher than simple instructions [2] or bytes [1], it still may
be the case that the morpher is altered so that it is not
easy to statistically distinguish it from other legitimate
constructors.

For a fast filter, false positives are perfectly accept-
able if the false positive rate is reasonable—even a 20%
false positive rate means that 80% the time no costly
analysis is wasted on irrelevant suspect programs. How-

ever it is particularly important to have an extremely
low false negative rate—guaranteed no false negatives,
if possible. In particular, it would be helpful to have a
general mathematical framework within which one can
prove the false negative rates are desirably low.

3. Fast recognition using Markov models

A framework is proposed for using Markov theory
to define fast filters based on detecting telltale signs of
the morphing within program properties that are quickly
checkable. Using Markov chain theory it is possible to
show that false negatives will not occur up to some gen-
eration of morphing. The model is defined on morphing
processes that: (1) satisfy the Markov property, and (2)
are such that each morphing operations alters a rapidly-
checkable program property in predictable ways, and
such that this property is a determinant of the frequen-
cies of morphing actions in subsequent iterations.

The framework is introduced by way of an example
filter model for probabilistic, closed-world, instruction-
substitution engines. The example uses IFVs as the
comparison property. After describing the specific ex-
ample, its generalization is described. Introducing the
framework using this example helps in exposition, but it
also demonstrates that the framework can be applied to
an interesting class of morphers, since such instruction-
substitution engines are known. Background notation is
briefly introduced, a model of the morpher is introduced,
and the Markov-based filter is described. The Markov-
based analysis is then generalized to a framework.

3.1. Morpher modeling

In this section, a formal model of a target morphing
engine M is presented. It is based on the model from
Chouchane et. al [4]. We target the class of closed-
world morphing malware that uses a morphing engine
that applies a fixed, finite set of transformation rules,
each rule mapping an instruction (the left hand side) to
a sequence of multiple instructions (the right hand side).
These rules are used by the engine to probabilistically
substitute, in the variant being transformed, occurrences
of the left hand sides of the rules with one of their cor-
responding right hand sides. These probabilities are as-
sumed to be fixed, or exactly learnable from the descrip-
tion of the engine, for each rule of the transformation
system. In order to reduce the very large number of pos-
sible assembly language instructions which are identical
except for the register names or variable values that they
use, the model may abstract an instruction to just its op-
code mnemonic. In the sequel we will loosely use the
phrase “code segment” to refer to the abstraction of the
actual code segment.

Given a positive integer n and a sequence �x =
(x1, x2, ..., xn) ∈ N

n, we define the norms ||�x||1 =∑n
i=1 |xi| and ||x||∞ = max(|x1|, |x2|, ..., |xn|). I =

{I1, I2, ..., Im} denotes the instruction set of a target
computing platform. OCC denotes the function from
(I+, I) to N mapping each (P, Ii) pair to the frequency
of instruction Ii in code segment P . Z denotes the func-
tion from R to {0, 1}which returns 1 if and only if its ar-
gument is 0. T = {li → {(Prj

i , r
j
i) : 1 ≤ j ≤ imax)}}

denotes the set of n productions used by the morph-
ing engine to transform its input. It is assumed that
li ∈ I, rji ∈ I+, exactly one rji is identical to li, and∑imax

j=1 Prj
i = 1, for all 1 ≤ i ≤ n. Prj

i denotes the

probability of use of right hand side element rj
i (i.e., the

probability that rji is chosen to replace an instance of li).
For instructions Ii and Ik , Fi,k(β) returns the probabil-
ity that, on input one instance of Ii, the engine generates
β instances of Ik.

The probabilities of use are assumed to be fixedfor
each production and extractable interactively from the
morphing engine. Furthermore, if the engine is not
available, these probabilities may also be estimatedfrom
large corpora of programs, where each corpus contains
members of some specific generation of descendants of
some Eve. Probabilities of use may for example be
implemented (as in the W32.Evol and W32.Simile
metamorphic viruses) using a random number generat-
ing procedure that is part of the engine and that makes
its choices at run time by reading arbitrary memory lo-
cations. If the latter is the case then we assume that the
choices are uniform; Prj

i = 1
imax

for each rji . Whenever
the morphing engine visits an instruction that is also the
left hand side li of some production, with probability
Prj

i the engine substitutes li for rji . A sample set of this
type of rule appears in Figure 1.

Let P denote some program and n the number of dis-
tinct instructions occurring in P . The instruction fre-
quency vector of P , denoted IFV (P), is the n-tuple
each of whose components represents exactly one op-
code mnemonic and holds the frequency (or count) of
that mnemonic in P . No two components may represent
the same mnemonic. For instructions Ii and Ik, α ∈ N,
and β ∈ N, Gi,k(α, β) returns the probability that, on
input α instances of Ii, the engine generates β instances
of Ik . It returns 0 if α = 0. For 1 ≤ i ≤ k ≤ m, �αi,k de-
notes the segment (subvector) of a program’s IFV which
starts at instruction Ii and ends at instruction Ik. For
β ∈ N, 1 ≤ i ≤ j ≤ m, and 1 ≤ k ≤ m, Hk(�αi,j , β)
returns the probability that β instances of instruction Ik

are generated by the engine on input a program with IFV
�α1,m, where all of �α1,m’s components are 0 except, per-
haps, for subvector �αi,j . Finally, T (�α1,m, �β1,m) returns
the probability that, on input a program with IFV �α1,m,

li → {r
i1
i r

i2
i r

i3
i }

1 mov [reg1+imm], reg2 → push reg push reg
mov reg, imm mov reg, reg1
mov [reg1+reg], reg2 add reg,imm1
pop reg mov [reg+imm2], reg2

pop reg

2 mov reg, imm → mov reg, imm1 mov reg, imm1 mov reg, imm1
add reg, imm2 sub reg, imm2 xor reg, imm2

3 push reg → push reg
mov reg, imm

4 sub reg reg → xor reg, reg

Figure 1. Example rule set.

the probabilistic instruction substituting engine gener-
ates a program with IFV �β1,m.

Note that, in general, a morpher may iteratively apply
the morphing rules in order to create a variant. A server-
side morpher may, for example, start with the same orig-
inal program and create variants by multiple application
of the substitution rules. In such cases, we still say that
the morphing engine produces variants of different “gen-
erations”, where a generation is an iteration through the
substitution rules.

3.2. Detection using a Malware’s IFV

Given the preceding model of the instruction-
substituting morpher, a property is selected that is pre-
dictably altered by the morpher and such that this prop-
erty dictates iterated morphing properties. We expand on
the suggestion of Chouchane et. al[5] by elaborating the
formal Markov model for the detection or filtering; gen-
eralization of the model to a framework is performed in
the subsequent section. The trick to mapping the prob-
lem to a Markov chain problem is to treat that property
as a “state”, and then map state transition changes as
predictable changes to that property.

State and State Transition.To be consistent with the
terminology used in Markov chain theory, we will use
the term “state” (normally called abstraction) to refer to
a program’s IFV. Figure 2 illustrates a simple example
of a state transition induced on a code fragment by some
probabilistic instruction substituting engine. Note that a
state transition is a vector (IFV) transformation.

State Transition Probability. Given two program
states �α1,m and �β1,m, the transition probability from
�α1,m to �β1,m is the probability that, on input a pro-
gram whose state is �α1,m, the morphing engine produces
a program whose state is �β1,m. This probability will
depend upon the instruction frequencies, the transition
rules that can morph those instructions, and the prob-
abilities of those rules. Since the transition probabili-
ties do not depend upon the history of transitions, such
a morphing process obeys the Markov property and can

be modeled as a Markov chain.
State Transition Matrix.Given a (finite) set of states

of size k, the k by k transition matrix is the matrix con-
structed where row i and column j entry is the state tran-
sition probability between state i and state j.

���������	
��

���
������	

���������	
���
���������	
�����
���������	
���

���
������	
���������	
��
����������	���
���	

����������

������������	

�������������
����
�������
��������������
����������	
���
����������	
�����
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

�������� ����
��� !�� ���� "!�#�
����$!
%� �

����$! �
�����$!�%��
%� �

!����� ����
��� !�� ���� "!�#�
����$!
%� �

����$! �
�����$!�%��
%� �
����$!
%� �
����$!
%� �
����$!
$! �
����$!
$! �

�
�$! �

����������	
�
��

Figure 2. Simple state transition.

The Existing work on Markov chains [18] has identi-
fied certain interesting classes of chains and ways of us-
ing a chain’s transition matrix to infer useful information
about the process it represents. In particular, successive
powers of the transition matrix can be used for predict-
ing the distribution of instruction forms. Specifically,
a Markov chain T is typically started in a state chosen
by a probability distribution on the set of states, called
a probability vector. Let �u denote a probability vector
which holds the initial probabilities of a malware’s state.
The powers of T are known to give interesting informa-
tion about the evolution of these distributions from one
malware generation to the next: For any positive integer
n, the ijth entry (T n)ij of T n gives the probability that
the chain, starting in state si, will be in state sj after n

steps. More generally, if we let un = uT n, then the
probability that an nth-generation malware descendant
is in some state si after n transitions is the ith compo-
nent of un.

This result can be used as the basis for filtering. As-
sume that a known existing malicious program is sus-
pected to have given rise to variants through application
of the morpher. The original malicious program evecan
be considered the initial probabilities, that is, �u will have
0 for all states except for IFV (eve), the IFV of eve.
Given a suspect program q, it will have a particular IFV,
IFV (q). The matrix entry of T n IFV (eve), IFV (q)
will record the probability that q is a nth generation vari-
ant of eve. Significantly, if that entry is 0, then it is
impossible that q could have been generated by the mor-
pher in n generations. If the entry is non-zero, it the
probability that the morpher would have created q from
the eve. Given a constant number of generations, k, the
transition matrices up to k define the possibility that q
could have been generated by M in up to k generations;
the probabilities can also be examined to determine if it
is likely that q is a given generation descendant of eve.
This basic results provides the mathematical basis for a
filter based on the predictable morphing actions of M .

3.3. Computing transition probabilities

The state transition probability, T (�α1,m, �β1,m), is
computed using the probabilities Fi,k, Gi,k , and Hk de-
fined above. Fi,k can be computed by observing that,
for all β,

Fi,k(β) =
imax∑

j=0

Z(β − OCC(rj
i , Ik)) × Prj

i .

We view the probabilistic instruction substitution pro-
cess of α instances of instruction Ii as α independent
events (individual substitutions of each of the α in-
stances of instruction Ii). The outcome of each of these
events may yield zero or more occurrences of instruc-
tion Ik . Let S = {δ : Fi,k(δ) �= 0} denote the set of
all possible counts of instruction Ik that can be gener-
ated by the engine on input an instance of instruction I i.
Let Sα

β denote the set of α-tuples �δ = (δ1, δ2, ..., δα) of

elements of S such that ||�δ||1 = β. Gi,k(α, β) is given
by

Gi,k(α, β) =
∑

�δ∈Sα
β

α∏

j=1

Fi,k(δj).

Unfortunately, the problem of finding a �δ ∈ Sα such
that ||�δ||1 is equal to β is an NP-complete one. In fact,
computing any α-tuple x whose ||.||1 equals a fixed β is
an instance of the SUBSET SUM problem and is hence

NP-complete. In practice, one may then want to choose
to use a polynomial-time approximation scheme [11] for
computing each of the Gi,k(α, β).

Hk(�α1,m, β) can be recursively computed by observ-
ing that for 1 < i < m, Hk(�αi,m, β) =

∑β
δ=0 Fi,k(δ)×

Hk(�αi+1,m, β−δ). The recursion stops when i+1 = m,
that, is when we ask for the value of Hk(�αm,m, β − δ).
This value is computed by observing that Hk(�αm,m, β−
δ) = Gm,k(||�αm,m||1, β − δ).

The IFV transition probabilities are finally computed
by observing that

T (�α1,m, �β1,m) =
m∏

i=1

H(�α1,m, ||�βi,i||1).

3.4. Matrix optimization

In theory, the set of all possible IFVs is infinite, since
infinite growth in size is a theoretical option for morph-
ing malware. It is hence necessary in practice to at least
impose an upper bound on the size of this set while lim-
iting, as much as possible, the deterioration of the pre-
dictive and classification power of the transition matrix.

Possible heuristics for doing so include, but may not
be limited to, (1) reducing the size of the instruction
set by abstracting an assembly language instruction to
its opcode mnemonic or by ignoring register names and
variable values, (2) imposing an upper bound on the pos-
sible frequency of each individual instruction, (3) im-
posing an upper bound on an IFV’s norm ||.||∞, and (4)
abstracting each component of an IFV to one of two val-
ues (“low” or “high”), depending on whether that com-
ponent is less than or greater than some threshold.

4. Generalization

The IFV-based model described above can be gener-
alized to expand the set of morphers that the model can
apply to. Furthermore, the basic Markov-based frame-
work can be divorced from the specifics of the IFV so
that it can be applied to the larger class of morphers that
need not be instruction-substituting; indeed, the same
basic Markov framework can apply to any morphing
process that fits certain Markov process properties.

4.1. Generalization of mutation model

In addition to allowing garbage inserting transforma-
tions which are modelable as fixed transformation rules
(i.e., which map an instruction to a code segment of fi-
nite, fixed size), we allow the following relaxations to
the target probabilistic instruction-substituting engine.

1. The engine may not perform any condition check-
ing. The engine is free to rewrite any or all of the
left hand side instances without the need to perform
condition checking. Rule 3 of Figure 1 is garbage-
inserting rule and is a good example of the engine
simply making the assumptionthat the condition
“immediately after each push eax instruction,
the contents of register eax may be safely altered”
is TRUE. This relaxation is based on the observa-
tion that condition checking may not be an optimal
design choice of morphing malware since it typ-
ically increases the engine’s transformation time;
it may require the engine to statically solve po-
tentially costly (and sometimes unsolvable) prob-
lems. Allowing this relaxation adds non-condition-
checking malware to our targeted class of malware.
See Walenstein et al. [24] for more on the design
choices of morphing malware.

2. The engine may perform additional transforma-
tions as long as they are not IFV-altering.The en-
gine may perform extra transformations to the vari-
ant being transformed as long as they do not change
the IFV of that variant. Such transformations in-
clude register renaming and instruction reordering.
Examples are shown in Figure 3. These transfor-
mations (except perhaps for the instruction reorder-
ing transformation) are often used by malware writ-
ers since they are relatively easy to implement and
contribute to changing the code of the variant being
transformed. Allowing this relaxation adds non-
IFV-altering malware to our targeted class of mal-
ware.

The first relaxation is reasonable because the mal-
ware signature prediction and detection procedure pro-
posed in this paper is independent of the semantics of
the malware.

The second relaxation is reasonable because this pro-
cedure is specifically designed to detect the effects of the
instruction substitution transformation and assumes that
only instruction substitution affects the IFV of the mal-
ware code, i.e., any other subsequent transformations
performed by the engine do not affect the IFV of the
malware code.

Since we are dealing with engines which substitute
an instruction by code segments of size greater than or
equal to one, the size of a descendant of a given variant
may be greater than that of the variant. It is clearly a
plausible requirement of good design practices of mor-
phing malware to prevent a malware variant size from
“growing too fast” as its code gets morphed. A number
of methods can be used to have some control over the
increase in the sizes of the successive descendants for a
given variant. One way of doing this, in the context of

probabilistic instruction-substituting malware, is to as-
sign low rule application probabilities to rules that in-
crease the size of the variant being transformed. Higher
rule application probabilities would be assigned to rules
transforming a single instruction into another single in-
struction. The IA-32 instruction set is rich enough to
allow for a large number of rules (such as the fourth rule
in Figure 1) mapping an instruction to an equivalent but
syntactically different instruction.

���������	
��

���
������	

���������	
���
���������	
�����
���������	
���

���
������	
���������	
��
����������	���
���	

����������

������������	

�������������
����
�������
��������������
����������	
���
�����������
�����
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

��	
��

���
��

������������	

�������������
����
�������
��������������
����������	
���
����������	
�����
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

������������	

�������������
����
�������
��������������
����������	
�����
����������	
���
���������������
�������������	�
����
������	
����������������
����
�������
����������������
��������������
��������������������
����
�
����

Figure 3. Morphing transformations.

4.2. Generalization to Markov framework

The example used in the previous section is that of
an instruction-substituting morphing engine. It is pos-
sible to generalize the entire work by carefully noting
how the formalization to use Markov chain theory was
accomplished:

• Markov property The morphing engine obeyed
the Markov property in that the probability of the
rules firing did not depend upon the history of fir-
ing.

• State and state transition mapping The state in
our model was the IFV of the program. This is
a quickly calculable abstraction of the program it-
self. Morphing actions (state transitions) could be
mapped to state transitions.

• Morphing dependence on property Note that for
the transition mappings to be possible, the morph-
ing actions must depend upon the abstracted state.
In the case of the instruction-substituting engines, it
is clear that the substitutions that may be performed
depend wholly upon the frequencies of the instruc-
tions present.

Thus, while the proposed IFV method of fast fil-
tering itself may be useful (for instruction substitut-
ing morphers), a more general result is the Markov-
based framework. It can be noted that many other
morphing processes—including ones that are not fully
automatic—may be approximated as a Markov process.
If there is a controlling property of the morphing, and
this property is quickly checkable, then a fast filter may
be defined.

5. Conclusions

The IFV-based detection model proposed in the pa-
per circumvents the inherent limitations of many static
and dynamic malicious program detection approaches.
It is a semantics-independent solution to the problem of
detecting morphed malware variants that overcomes the
limitations of having to exactly solve unsolvable prob-
lems or efficiently solve provably intractable problems.
Furthermore, the individual limitations of existing tech-
nology and research on malware detection, and the fact
that morphing engines are difficult to write and tend to
be reused, typically by writing a new malicious program
to be morphed by an existing engine, suggest the useful-
ness of the proposed method, since it uses information
about a morphing malware’s engine (transformation pro-
cess) to detect variants of the malware by approximately
deciding membership in the set of programs that can be
generated by the engine.

It is perhaps intuitively expected that a predictable
morphing engine will have an exploitable weakness sim-
ply by virtue of the predictable nature of the morphing
actions. The proposed framework defines cases where
fast filtering is possible; specifically the framework pro-
vides the mathematical basis for defining accurate fil-
ters (no false positives) for variants of known programs
built from known morphing engines that obey specific
Markov properties. This can raise the bar for malware
production by easing the detection of the potentially
large volumes of variations that could be generated us-
ing simple morphers. While important implementation
and optimization issues are outside the scope of this pa-
per, the key step for defining a fast filter is taken by the
framework in the use of a quickly computable property
of a program that can be used to look up probabilities of
being constructed by the Markov generation process.

References

[1] D. Bilar. Statistical structures: Fingerprinting malware
for classification and analysis. In Proceedings of Black
Hat Federal 2006. Black Hat, 2006.

[2] D. Bilar. Opcodes as predictor for malware. Int.
J. Electronic Security and Digital Forensics, 1(2):156–
168, 2007.

[3] M. R. Chouchane and A. Lakhotia. Using engine signa-
ture to detect metamorphic malware. In 4th Workshop
on Recurring Malcode (WORM), 2006.

[4] M. R. Chouchane, A. Walenstein, and A. Lakhotia.
Statistical signatures for fast filtering of instruction-
substituting metamorphic malware. In 5th Workshop on
Recurring Malcode (WORM), 2007.

[5] M. R. Chouchane, A. Walenstein, and A. Lakho-
tia. Metamorphic authorship recognition using Markov
models. Virus Bulletin, May 2008.

[6] M. Christodorescu, S. Jha, S. A. Seshia, D. Song, and
R. E. Bryant. Semantics-aware malware detection. In
Proceedings of the 2005 IEEE Symposium on Security
and Privacy (S&P’05), pages 32–46, 2005.

[7] M. Christodorescu, J. Kinder, S. Jha, S. Katzenbeisser,
and H. Veith. Malware normalization. Technical re-
port, Department of Computer Science, The University
of Wisconsin, 2005.

[8] F. Cohen. Computational aspects of computer viruses.
Computers and Security, 8(4):325, June 1989.

[9] M. Driller. Metamorphism in practice, 2004. http:
//vx.netlux.org/29a/29a-6/29a-6.205.

[10] E. Filiol. Metamorphism, formal grammars and unde-
cidable code mutation. International Journal of Com-
puter Science, 2(1):70–75, Apr. 2007.

[11] M. R. Garey and D. S. Johnson. Computers and In-
tractability: A Guide to the Theory of NP-Completeness.
W. H. Freeman & Co., 1979.

[12] Z. hong Zuo, Q. xin Zhu, and M. tian Zhou. On the time
complexity of computer viruses. IEEE Transactions on
Information Theory, 51(8), Aug. 2005.

[13] M. E. Karim, A. Walenstein, A. Lakhotia, and L. Parida.
Malware phylogeny generation using permutations of
code. Journal in Computer Virology, 1(1-2):13–23,
November 2005.

[14] D. V. Khmelev and F. J. Tweedie. Using markov chains
for identification of writers. Literary and Linguistic
Computing, 16(4):299–307, 2001.

[15] I. Krsul and E. Spafford. Authorship analysis: Identify-
ing the author of a program. Computers and Security,
16(3):233–257, 1997.

[16] A. Lakhotia and M. Mohammed. Imposing order on pro-
gram statements to assist anti-virus scanners. In Pro-
ceedings of the 11th Working Conferenceon Reverse En-
gineering, 2004.

[17] H. Martin, editor. Proceedings of Virus Bulletin Confer-
ence 2007, Vienna, Austria, 2007. Virus Bulletin Inc.

[18] S. Meyn and R. Tweedie. Markov Chains and Stochastic
Stability. Springer-Verlag, London, 1993.

[19] M. Schipka. A road to big money: evolution of automa-
tion methods in malware development. In Martin [17].

[20] R. Sherstobitoff. Server-side polymorphism: Crime-
ware as a service model (CaaS). ISSA Journal, page 46,
May 2008.

[21] Symantec. Symantec global internet security threat re-
port volume XIII: Trends for july–december 07, Apr.
2008.

[22] P. Ször. The Art of Computer Virus Research and De-
fense. Symantec Press. Addison Wesley Professional,
1st edition, 2005.

[23] J. Telafici and D. Gryzanov. What a waste — the AV
community DoS-ing itself. In Martin [17].

[24] A. Walenstein, R. Mathur, M. R. Chouchane, and
A. Lakhotia. The design space of metamorphic malware.
In 2nd International Conference on i-Warfare and Secu-
rity (ICIW), 2007.

[25] A. Walenstein, R. Mathur, M. R. Chouchane, and
A. Lakhotia. Constructing malware normalizers using
term rewriting. Journal in Computer Virology, January
2008 2008. doi:10.1007/s11416-008-0081-5.

[26] Q. Zhang and D. S. Reeves. MetaAware: Identifying
metamorphic malware. In Proceedings of the 23rd An-
nual Computer Security Applications Conference (AC-
SAC’07), pages 411–420, 2007.

